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Abstract
The objective of the present study is to investigate the effect of electro-magnetic field and heat transfer on the oscillatory
flow of a dielectric fluid through a Darcy’s Brinkman model in a symmetric flexible sinusoidal wavy channel. The equations
which govern the Electro-Magneto hydro dynamic of oscillatory flow for a dielectric fluid are made non-dimensional and
coordinate transformation is employed to convert the irregular boundary to a regular boundary. The obtained system of
equations is solved analytically by using the regular perturbation method with a small amplitude ratio. Approximate solution
for the mean axial velocity, the mean electric potential, the mean temperature, and the mean pressure gradient is obtained.
Further, the effect of pertinent parameters is demonstrated and discussed. The phenomena of reflux (the mean flow reversal)
are discussed. It is found that the critical reflux pressure is greater for a fluid without an electric field. Also, the increase of
magnetic field decreases the flow rate which is helpful to control the blood flow during the surgeries.
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1 Introduction

Electro kinetics “electro-fluid dynamics (EFD) or electro
hydrodynamics (EHD)” is the study of the dynamics of
electrically charged fluids. In addition, it is the study of
the motions of ionized particles or molecules and their
interactions with electric fields and the surrounding fluid.
Electro hydrodynamics EHD covers the following types of
particle and fluid transport mechanisms: electrophoresis,
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electro kinesis, dielectrophoresis, electro-osmosis, and
electrorotation. It appears in many applications such as
enhancement of drying rates, drag reduction, plasma
actuators, and gas pumps. Electro hydrodynamics EHD
equations of motion can be classified to two groups:
hydrodynamic equations and electric field equations.
Theoretically, electro hydrodynamics EHD flow was
investigated by Woodson and Melcher [1]. The problem
of the onset of convective instability in a horizontal layer
of a dielectric fluid under a simultaneous action of a
vertical alternative current AC electric field and a vertical
temperature gradient was examined by Takashima [2, 3]
and Vidhya et. al [4]. Also, the effect of vertical alternative
current AC electric field and heat transfer on peristaltic
flow of a viscous incompressible dielectric liquid sheet
in asymmetrical flexible channel has been investigated by
el-sayed et al. [5].

The temperature is associated with the motion of
molecules within a fluid [6], being directly related to the
kinetic energy of the molecules, including vibrational and
rotational motion. Heat transfer is the energy transferred
between two points at different temperatures. It has
significant in several industrial and medical applications
such as heat conduction in tissues, heat transfer due to
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perfusion of the arterial-venous blood through the pores
of the tissue, metabolic heat generation, and external
interactions such as electromagnetic radiation emitted from
cell phones. Also, thermodynamic aspects of blood may
become significant in processes like oxygenation and
hemodialysis when blood is drawn out of the body.
Considering the needs of investigations in the peristaltic
movement of physiological fluids, many authors [7–16]
have been studied peristaltic flow with heat transfer.

Peristaltic flow of magnetohydrodynamic (MHD) fluid
plays very important role in medical sciences and bio
engineering such as cancer tumor treatment, cell separation,
and blood reduction during surgeries. The effect of moving
magnetic field on peristaltic flow is studied by many
authors [17–24]. The magneto hydrodynamic (MHD) and
electro hydrodynamics (EHD) flows through porous tube
are great interest in the study of the interaction of the
geomagnetic and electric fields with the blood in the
oscillatory flow. Flow through a porous medium has
several practical applications especially in geophysical fluid
dynamics. Moreover, the natural porous media are modeled
as beach sand, sandstone, limestone, the human lung,
bile duct, and gall bladder with stones in small blood
vessels. El Shehawey et. al. [25, 26] studied the peristaltic
flow of a Newtonian fluid thorough a porous medium.
There are distinct types for porous media such as Darcy’s,
Forchheimer’s and Brinkman’s models. In the proposed
system, we focus on the Brinkman model because of its
many objectives. One of the objectives is to examine flow
structure near the bounding walls. Our second objective is to
test the feasibility of addressing the thin region. The Darcy-
Brinkman model is interest in biomedical hydrodynamic

studies, including its use in modeling a thin fibrous surface
layer coating blood vessels (endothelial surface layer) as it
is a highly permeable, high porosity porous medium [27].

Increasing the exploitation of technologies that use
electric magnetic fields in some specific branches such
as medicine based on magnetic resonance imaging and
transportation systems that use direct current, in addition
it is used in cancer treatment, so we found that it
is important to study the electro-magnetohydrodynamic
oscillatory flow of a dielectric fluid through a porous
medium (Brinkman’s model) in the presence of the heat
transfer. Accordingly, in the present work, we study the
effect of the interaction between the Electro Hydrodynamics
(EHD) and magnetohydrodynamic (MHD) in peristaltic
flow through porous medium with heat transfer by
considering a small wave number . The velocity profile,
temperature distribution, pressure gradient, the critical
pressure, and electric potential function are obtained, by
using the regular perturbation method up to the second order
in terms of the amplitude ratio and wave number.

2 Equations of Motion

We consider a symmetric two-dimensional channel of uni-
form width 2d filled with an incompressible dielectric fluid.
We assume an infinite sinusoidal wave train traveling along
the walls. The lower and the upper walls are maintained at
constant temperatures θ00 and θ10, respectively. In addition
to the temperature gradient, a vertical a.c. electric field is
also imposed across the channel. The lower wall is grounded
and the upper wall is kept at the electric potential ϕ10. Also

Fig. 1 Sketch of the physical
model
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we apply a constant magnetic field perpendicular to the
electric field as shown in Fig. 1

h′(X′, t ′) = d + a cos
2π

λ
(x − κ

d
t), (1)

where d, a, λ, κ
d
and t are width, amplitude, wavelength,

velocity of the wave and time. In the absence of external
forces and the fluid in the porous structure then equations of
continuity and momentum for the flow of an incompressible
fluid are given by Brinkman’s equations in the following form,

∇.�q = 0, (2)

ρ

(
∂ �q
∂t

+ (�q.∇)�q
)

= −∇p∗ + μ1∇2 �q − μ

k1
�q + �J × �B + �fe, (3)

∂θ

∂t
+ �q.∇θ = κ∇2θ, (4)
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2
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2
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(
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, (5)

�J = σ ∗
[
�q × �B − 1

e1ne
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]

, (6)

where μ1 = μ
e

,�q, ρ, p∗, ν, θ , κ = K
ρc
, K , c,

�fe, ρe, �E, ε, �J , �B, σ ∗, e1, e, k1 and ne are apparent
viscosity of the fluid, velocity vector of the fluid, density,
pressure, kinematic viscosity, temperature, thermometric
conductivity, thermal conductivity, specific heat, body
forces of electrical origin per unit volume, free charge
density, electric field, dielectric constant, current density,
total magnetic field, electric conductivity, electric charge,
the porosity parameter, permeability coefficient, and the
number of electrons density.
Since there is no free charge, The Maxwell’s equation
following [28] are:

∇ · (ε �E) = 0,

∇ × �E = 0, or �E = −∇ϕ, (7)

where ϕ is the electric potential, and the dielectric constant
ε is assumed to be a function of temperature as follows [3],

ε = ε0(1 − ε(θ − θ00)).

Then, the governing equations for two-dimensional motion
of this model are:
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where ε0 be the permittivity at vacuum , ε be the thermal
expansion coefficients of dielectric constant ε and p =
p∗ − 1

2 (ρE2 ∂ε
∂ρ

). We introduce the stream function u = ∂ψ
∂y
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, then we find
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For further analysis, we use the following non-dimensional
variables and parameters:

x = x ′
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Using the non-dimensional variables and parameters given
above in Eq. 9, we find that the equations which govern the
flow for a fluid in terms of the stream function ψ(x, t)
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is the Reynolds number , L =
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d
is amplitude ratio and
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is the wave number.
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The corresponding dimensionless boundary conditions
are

∂ψ

∂y
= 0 ,

∂ψ

∂y
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(12)

where η = a0 sinα0(x − t).

3 Solution of the Problem

We assume that the dimensionless quantities ψ , p, θ and ϕ

can be expanded, respectively, in powers of the amplitude
ratio a0 as follows [29]:
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where ∂p
∂x

be the pressure gradient. Substituting Eq. 13
into Eqs. 11 and 12 and collecting terms of equal powers of
a0 ,we obtain the following set of the system model.

Zeroth-Order SystemModel
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First-Order SystemModel
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Second-Order SystemModel
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Zero Order Solution At this order, we have the case of
free pumping which means that the fluid is stationary. The
solution will take the form

u0 = 0 , v0 = 0,

θ0(y) = −y + θ00+θ10
2βd

,

ϕ0(y) = − a1
L2

ln(h + L2y),

p∗
0(y) = γ a21

2L2[h+L2y] + b0, (17)

where b0 is arbitrary constant, a1 = ϕ10L2
E0d ln(1+2L2)

is the
electric parameter and h = 1 + L2.

First Order Solution From Eq. 17 in Eq. 15, we find,
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Equation 18 can be satisfied in the form

ψ1 = 1
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F1(y) exp[iα0(x − t)] + C.C.,
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where the C.C. denotes the complex conjugate. Then, from
Eq. 19 in Eq. 18 we get,
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with the boundary conditions
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(±1) = 0 , F1 = ±1 , T1(±1) = ±1,

E1 = −a1 , E1 = a1

1 + 2L2
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The system of Eqs. 20 and 21 has a solution in terms of the
wave number α0 in the form

F1(y) = F10(y) + α0F11(y) + ...............,

T1(y) = T10(y) + α0T11(y) + ................,

E1(y) = E10(y) + α0E11(y) + .............. . (22)

Substituting Eq. 22 into Eqs. 20 and 21 and collecting once
again terms of like powers of α0, we obtain

α0 - Zero Order

1
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. (24)

Where τ = 1
σ
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α0 - First Order
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with the corresponding boundary conditions:
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dy
(±1) = 0 , F11(±1) = 0,

T11(±1) = 0,

E11(±1) = 0. (26)

α0 - Zero Order Solution Equation 23 solved using the
boundary conditions (24) in the form,
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α0 - First Order Solution Using the boundary conditions (26)
the Eq. 25 can be solved in the form,

F11(y) = c1 cosh(
√

eτy) + c2 sinh(e
√
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√
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√
eτ) − 6τ cosh(

√
eτy)

,

E11(y) = 1

360h4L2e5/2τ 5/2
(√

eτ cosh(
√

eτ) − sinh(
√

eτ)
) (iaL2

2(360(h
2eτ − 2hL2eτy + 3L2

2(2 +

y2eτ)) cosh(
√

eτy) + √
eτ(eτy2(−15L2

2y
2
(
18 − 3eτ + 2y2eτ

)
+ 8hL2y

(
30 − 5eτ + 3y2eτ

)

−15h2
(
12 +

(
−2 + y2

)
eτ

)
) sinh(

√
eτ) + 720L2(h − 3L2y) sinh(y

√
eτ))) + 360h4(eτ )5/2

ln(h + L2y)
(√

eτ cosh
(√

eτ
) − sinh

(√
eτ

))
c5) + c6, (28)

where,

g(y) = iR
(
2
√

e
√

τy cosh
(√

e
√

τy
) − sinh

(√
e
√

τy
))

4τ
(√

e
√

τ cosh
(√

e
√

τ
) − sinh

(√
e
√

τ
)) + ia2γR

60e2h7τ 3
(30eh3τ

(
eτy2 + 2

)
−

20eh2L2τy
(
eτy2 + 6

)
+ 15hL2

2

(
eτy2

(
eτy2 + 12

)
+ 24

)
− 12L3

2y
(
eτy2

(
eτy2 + 20

)
+ 120

)
).

(29)

The second order solution of our needed system of a0 can
be obtained by substituting Eqs.(17) in Eqs. (16), we find

∂

∂t
∇2ψ2 + ∂ψ1

∂y
∇2 ∂ψ1

∂x
− ∂ψ1

∂x
∇2 ∂ψ1

∂y
= 1

eRe

∇4ψ2 − 1

Re

(
1

σ
+ M

1 + m2

)
∇2ψ2 + γ

2

[
∂

∂y((
∂ϕ0

∂y

)2
∂θ2

∂x
+ 2

∂ϕ0

∂y

∂ϕ1

∂y

∂θ1

∂x

)
− ∂

∂x

((
∂ϕ0

∂y

)2
∂θ2

∂y
+

(
∂ϕ1

∂y

)2
∂θ0

∂y
+ 2

∂ϕ0

∂y

∂ϕ1

∂y

∂θ1

∂y
+ 2

∂ϕ0

∂y

∂ϕ2

∂y

∂θ0

∂y

)]
,

∂θ2

∂t
+ ∂ψ1

∂y

∂θ1

∂x
− ∂ψ1

∂x

∂θ1

∂y
= ∇2θ2,

∂

∂y

(
(1 + εθ00 − L2θ0)

∂ϕ2

∂y
− L2θ1

∂ϕ1

∂y
− L2θ2

∂ϕ0

∂y

)
= 0. (30)

Equation 30 can be satisfied by a solution of the form

ψ2 = 1

2
(F20(y) + F2(y) exp [iα0(x − t)] + C.C.) ,

ϕ2 = 1

2
(E20(y) + E2(y) exp [iα0(x − t)] + C.C.) ,

θ2 = 1

2
(T20(y) + T2(y) exp [iα0(x − t)] + C.C.) . (31)

Then, we get the steady part F20 in the form

1

e

d3F20

dy3
− τ

dF20

dy
= iReα0

2

[
−F1

d2F1
∗

dy2
+ F1

∗ d2F1

dy2
+ a1γ

h + L2y

(
T1

d2E1
∗

dy2
− T1

∗ d2E1

dy2

)]
+ 2c20,

d2T20

dy2

= iα0

2

(
dF1

∗

dy
T1 − dF1

dy
T1

∗ − dT1
∗

dy
F1 + dT1

dy
F1

∗
)

,
d

dt

[
(h + L2y)

dE20

dy

−L2

2

(
dE1

dy
T1

∗ + dE1
∗

dy
T1

)
+ a1L2T20

h + L2y

]
= 0, (32)
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with boundary conditions

dF20

dy
(±) = ∓1

2

(
d2F1

dy2 (±) + d2F ∗
1

dy2 (±)

)
= D,

T20(±) = ∓1

2

(
dT1

dy
(±) + dT ∗

1

dy
(±)

)
,

E20(−1) = −a1L2

2
+ 1

2

(
dE−1

dy
(−1) + dE∗

1

dy
(−1)

)
,

E20(1) = − a1L2

2(h + L2)
− 1

2

(
dE1

dy
(1) + dE∗

1

dy
(1)

)
. (33)

From the Eqs. 28, 27 and using the boundary conditions (33)
in (32), the system equations of (32) can be easily solved in
the form

F ′
20(y) = − 2c20

eτ

(
1 − cosh(

√
eτy)

cosh(
√

eτ)

)
+ (τ (2D−k(−1)−k(1)))

2τ
cosh(

√
eτy)

cosh(
√

eτ)

+ (k(−1)−k(1))
2

sinh(
√

eτy)

sinh(
√

eτ)
+ k(y). (34)

Where D = eτ√
e
√

τ coth(
√

e
√

τ)−1

T20(y) = n(y) + c9y + c10,

E20(y) = w(y) + c11 ln(h + L2y) + c12.

Thus, the mean time-averaged velocity is

u(y) = 1

2π

∫ 2π

0
u(y, t)dt = u0(y) + a20

2
´F20(y), (35)

the mean time-averaged heat is

T (y) = 1

2π

∫ 2π

0
T (y, t)dt = θ0(y) + a20

2
´T20(y), (36)

and the mean time-averaged electric potential is

ϕ(y) = 1

2π

∫ 2π

0
ϕ(y, t)dt = ϕ0(y) + a20

2
É20(y). (37)

From the Eqs. 13, 17, 19 and 22 in the Eq. 11, and each term
is averaged over an interval of time. then the second order
mean pressure gradient may given as

∂p2

∂x
= 1

2rRe

d3F20

dy3
− τ

2Re

dF20

dy
+ iRα0

4

[
F1

d2F1
∗

dy2
− F1

∗ d2F1

dy2

− a1γ

h + L2y

(
T1

dE1
∗

dy
− T1

∗ dE1

dy

)]
= C20

eRe

. (38)

Then its find that the constant c20 is proportional with the

mean pressure gradient ∂p2
∂x

. From Eqs. 34, 35 and 38, the
mean-time average velocity can be written as,

u(y) = a20

2

(
−2

Re

τ

∂p2

∂x

(
1 − cosh(

√
eτy)

cosh(
√

eτ)

)

+ (τ (2D − k(−1) − k(1)))

2τ

cosh(
√

eτy)

cosh(
√

eτ)

+ (k(−1) − k(1))

2

sinh(
√

eτy)

sinh(
√

eτ)
+ k(y)

)
. (39)

If we neglect the external body force effects and the effect
of magnetic field in Eq. 9 we get the same solution of [30]
in absence the slip condition as

u(y) = a20

2

⎛
⎜⎝−2σRe

∂p2

∂x

⎛
⎜⎝1 −

cosh(
√

e
σ
y)

cosh(
√

e
σ
)

⎞
⎟⎠

+(D − k(1))
cosh

(√
e
σ
y
)

cosh
(√

e
σ

) + k(y)

⎞
⎟⎠ . (40)

4 Comparison with Theoretical Results

We comprise our analytical solution with the theoretical
results that obtained by Fung and Yih [29] and Maiti and
Misra [30]:

• When M → 0 and L → 0, our numerical results are
the same of those obtained by Maiti and Misra [30].

• When M → 0, L → 0 and σ → ∞, our numerical
results are the same of those obtained by Fung and Yih
[29].

as shown in the Fig. 2

5 Results and Discussion

In the problem solution, we have shown the analytical
expressions of the mean time-averaged velocity, the mean
time-averaged temperature, and the mean time-averaged
electric potential.

Fig. 2 Comparison between analytical solution and the theoretical
results that obtained by Fung and Yih [29] and Maiti and Misra [30]
on the mean time-averaged velocity u(y) at Re = 15, σ = 1, e = 0.9,
a0 = 0.1 and α0 = 0.25
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a b c

Fig. 3 a Effect of the parameter a1 on the distribution of the mean
velocity for Re = 50, L2 = 0.02, M = 2, m = 0.1, σ = 0.1,
a0 = 0.1, e = 0.7, α0 = 0.01, ∂p2

∂x
= −3, and L = 10000. b Effect of

the electrical Rayleigh number on the distribution of the mean veloc-
ity for Re = 50, L = 0.01, M = 10, m = 0.1, σ = 0.9, a1 = 0.02,

e = 0.7, a0 = 0.1, α0 = 0.01 and ∂p2
∂x

= −3. c Effect of the pres-
sure gradient on the distribution of the mean velocity for Re = 50,
L = 10000, L2 = 0.1, M = 2, m = 0.1, σ = 0.1, a1 = 0.001, e = 1,
a0 = 0.1 and α0 = 0.01

Generally, Fung and Yih applied the peristaltic transport
during the ureter theoretically [29] and experimentally by
Yin and Fung [31].

• In the theoretical study [29], the peristaltic transport
for the ureter was simulated by using the following
parameters as Re : 0 → 100 and α0 : 0.05 → 0.4.

• In the experimental study [31], the ureter parameters
are taken as ureter length = 81.28 cm, λ = 9.8 cm,
a = 0.256 cm, d = 0.635 cm, and α = 3.77 cm.
In the dimensionless quantities the parameters become
a0 = 0.41, α0 = 0.385, and Re : 0.5 → 2.5.

Accordingly, we used the values of dimensionless param-
eters based on the theoretical and experimental studies to
investigate our problem as a0 = 0.1, α0 : 0 → 0.9,
Re : 0.5 → 100, M >

√
2 [17–24], and L > 10000 [3–5],

which agree with the previous experimental and theoretical
studies by others.

The discussion section is divided into three subsections.
In the first subsection, the effects of the various parameters
are discussed on the mean time-averaged velocity. In the
second subsection, we discuss the effects of the various
parameters on the mean time-averaged temperature and
the mean time-averaged electric potential. Moreover, the
critical pressure gradient for reflux is illustrated in the third
subsection.

5.1 Mean Time-Averaged Velocity

Numerical computation based on Eq. 39 detects that
the averaged axial velocity distribution for EHD fluid
induced by sinusoidal wavy walls through a porous medium
with heat transfer is dominated by the constant D

cosh(
√

eτ)

and the parabolic distribution 2Re

τ
∂p2
∂x

(
1 − cosh(

√
eτy)

cosh(
√

eτ)

)
in

addition to three terms k(y) + (k(−1)−k(1))
2

sinh(
√

eτy)

sinh(
√

eτ)
−

a b

Fig. 4 a Effect of the Reynolds number on the distribution of the mean
velocity for L = 10000, e = 1 , L2 = 0.1, M = 2, m = 0.1, σ = 0.1,
a1 = 0.001, a0 = 0.1, α0 = 0.01 and ∂p2

∂x
= −3. b Effect of the

magnetic field on the distribution of the mean velocity for L = 10000,
L2 = 0.01, e = 1, Re = 50, m = 0.1, σ = 0.1, a1 = 0.001, a0 = 0.1,
α0 = 0.01 and ∂p2

∂x
= −3
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a b c

Fig. 5 a Effect of the the Hall parameter on the distribution of the
mean velocity for L = 10000, L2 = 0.01, e = 1, Re = 50, M = 2,
σ = 1, a1 = 0.001, a0 = 0.1, α0 = 0.5 and ∂p2

∂x
= −3. b Effect of

the permeability parameter on the distribution of the mean velocity for
L = 10000, L2 = 0.01, Re = 50, M = 2, m = 0.1, a1 = 0.001,

a0 = 0.1, α0 = 0.5, e = 1 and ∂p2
∂x

= −3. c Effect of the poros-
ity parameter on the distribution of the mean velocity for L = 10000,
L2 = 0.1, Re = 15, σ = 1, M = 2, m = 0.1, a1 = 0.001, a0 = 0.1,
α0 = 0.5 and ∂p2

∂x
= −3

(τ (k(−1)+k(1)))
2τ

cosh(
√

eτy)

cosh(
√

eτ)
that represents the perturbation of

the velocity across the channel.
The constant D, which defines the velocity boundary

value of F ′
20, depends on magnetic field M , Hall parameter

m, porosity parameter e and permeability parameter σ and
appears from the expression of the radial gradient of the
first-order axial velocity distribution as shown in Eq. 33.

Figures 3, 4, and 5 illustrate the effect of the different
parameters on the mean velocity u(y). Figure 3a shows that
in the absence of the electric field, i.e., electric parameter
a1 = 0, the behavior of the mean velocity u(y) will be
symmetric and by increasing the value of electric parameter
a1, the behavior becomes asymmetric. Also, we find that
the velocity increases near the upper bound but decreases
near the lower bound of the channel. This occurs according
to the boundary conditions of the electric potential ϕ(y).
Interpretation physicist, the existence of the electric field

at the upper bound (ϕ 
= 0) decreases the density of the
fluid which making the fluid molecules freely moving, and
this leads to increase in the fluid velocity. When the value
of electric parameter a1 
= 0, the effect of the electrical
Rayleigh number L will be appear and giving the same
effect as a1 (see Fig. 3b). Figure 3c shows the variant of
u(y) vs y for different values of the pressure gradient ∂p2

∂x

and we can see that as ∂p2
∂x

increases, a reflux flow ( back
flow) will be appear.

Figure 4a studies the effect of Reynolds number on the
distribution of the mean velocity u(y) and as expected it is
found that the increases of the Reynolds number increase
the mean velocity u(y). This happens because the Reynolds
number is inversely proportional to the viscosity of the
fluid. That is, increasing the Reynolds number reduces
the viscosity of the fluid, which causes an increase in the
velocity of the fluid as expected. Figure 4b illustrates that

a b

Fig. 6 a Effect of the Rayleigh number on the distribution of the mean
temperature for Re = 100, L2 = 0.1, m = 0.1, M = 20, a1 = 0.2,
a0 = 0.1, σ = 2 and α0 = 0.9. b Effect of the magnetic field on the

distribution of the mean temperature for Re = 100, L = 0.1, m = 0.1,
L2 = 107, a1 = 0.1, a0 = 0.1, σ = 2 and α0 = 0.9
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a b c

Fig. 7 a Effect of the Hall parameter on the distribution of the mean
temperature for Re = 100, L = 0.1, M = 20, L2 = 107, a1 = 0.1,
a0 = 0.1, σ = 2 and α0 = 0.9. b Effect of the permeability parameter
on the distribution of the mean temperature for Re = 100, L2 = 0.1,

M = 20, L2 = 105, a1 = 0.1, a0 = 0.1 and α0 = 0.9. c Effect of the
porosity parameter r on the distribution of the mean temperature for
Re = 100, L = 0.1, M = 2, σ = 0.1, L2 = 105, a1 = 0.1, a0 = 0.1,
m = 0.1 and α0 = 0.9

as the magnetic field increases, the mean velocity u(y)

decreases, i.e., as M increases the Hartmann braking also
grows which could be thought as an increase of the magnetic
viscosity and so the fluid moves as a block with a constant
velocity. From Fig. 5, we found that by increasing the Hall
parameter m, the permeability parameter σ, and porosity
parameter e, the mean velocity u(y) increases.

5.2 Mean Time-Averaged Heat andMean
Time-Averaged Electric Potential

Now, we will study the nature of the mean time-averaged
temperature T (y) through Figs. 6 and 7. Figure 6a, b
shows that the increasing of Rayleigh number increases the
mean temperature T (y), but a reverse effect is observed by
increasing the magnetic field. Also the increase of the Hall
parameter m, the permeability parameter σ and porosity
parameter e produce an increase in the mean temperature
T (y) (see Fig. 7). It is also noted from Fig. 7b that
the temperature T (y) becomes steady as the permeability
parameter σ increases.

Figures 8, 9, 10, and 11 illustrate the behavior of
the mean time-averaged electric potential ϕ(y). Figure 8a
shows that the greater of the Rayleigh number L increases
the mean time-averaged electric potential near the walls but
reduces as we moves far from the walls. Figure 8b shows
that the increasing of the magnetic parameter M decreases
the mean time-averaged electric potential ϕ(y) but a reverse
effect is observed by increasing the Hall parameter m and
the permeability parameter σ (see Fig. 9a, b). Also, we
found that the mean time-averaged electric potential ϕ(y)

becomes steady as increasing the permeability parameter
σ . From Fig. 9c, we found that the increasing of the
porosity parameter e increases the mean time-averaged
electric potential ϕ(y) near the walls but an opposite effect
appears as we move far a way from the walls.

5.3 Critical Pressure Gradient for Reflux

The study of the critical pressure gradient for reflux is very
important because the bacteria and some other materials
sometimes moves from the bladder to the kidney or from

a b

Fig. 8 a Effect of the Rayleigh number on the distribution of the mean
electric for Re = 20, L2 = 0.1, m = 0.1, M = 2, a1 = 0.05, a0 = 0.1,

e = 1, σ = 1 and α0 = 0.1. b Effect of the magnetic field on the dis-
tribution of the mean electric for Re = 50, L2 = 0.1, L = 100000,
a1 = 0.05, a0 = 0.1, m = 0.1, σ = 1, e = 0.9, and α0 = 0.9
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a b c

Fig. 9 a Effect of the Hall parameter on the distribution of the mean
electric for Re = 50, L2 = 0.1, L = 100000, M = 10, a1 = 0.05,
a0 = 0.1, e = 0.9, σ = 1 and α0 = 0.9. b Effect of the permeabil-
ity parameter on the distribution of the mean electric for Re = 50,

L2 = 0.1, L = 100000, M = 50, a1 = 0.05, a0 = 0.1, m = 0.1,
e = 0.9 and α0 = 0.5. c Effect of porosity parameter on the distri-
bution of the mean electric for Re = 50, L2 = 0.1, L = 100000,
M = 50, a1 = 0.05, a0 = 0.1, m = 0.1, σ = 0.1 and α0 = 0.9

one kidney to the other in the direction opposite to the
direction of urine flow. This phenomenon is referred as
“ureteral reflux” by physiologists. The riskiness of diseases
such as tuberculosis, interstitial cystitis, and duct stone are
treated due to this reflux. See Graves and Davidoff [32],
Hutch [33], Gruber [34], and Fung and Yih [29].

To get the critical reflux pressure, the value of the mean
velocity u(y) set to zero in Eq. 39 on the central region at
y = 0. So, the critical pressure gradient will taken the form,(

∂p2

∂x

)
criticalpressure

= τ

2R
(
1 − Sech(

√
eτ)

)
(

k(0) + 1

2
(2D

− k(−1) − k(1))Sech
(√

eτ
) )

.

Figures 10 and 11 depict the critical pressure gradient
which is plotted against the wave number α0 that range
from 0 − 0.9. From the behavior of Fig. 10a, we observe
that the relation between the critical pressure gradient and
wave number α0 is inversely (the increase of the wave
number reduces the critical pressure values), also it is
found that the increase of the Reynolds number reduces
the critical pressure gradient. Figure 10b shows the effect

of the magnetic field on the critical pressure value, and
it can conjectured that the increase of the magnetic field
decreases the critical pressure when α0 is less than 0.38
but a vise versa effect when α0 more than this value.
Figure 11 illustrates the effect of Hall parameter, electric
Rayleigh number and porosity parameter respectively and
it is found that the increases of the Hall parameter, electric
Rayleigh number and porosity parameter decrease the
critical pressure value for reflux.

6 Conclusion

In this article, we design a mathematical model describing
the electro-magnetohydrodynamic oscillatory flow for a
dielectric fluid with heat transfer through a porous medium
“Brinkman model.” Graphs of the mean average velocity,
temperature distribution, and electric potential are drawn
for various values of the pressure gradient ∂p2

∂x
, the electric

Rayleigh number L, Reynolds number Re, the magnetic
field M , Hall parameter m, porosity parameter e, and

a b

Fig. 10 a Effect of the Reynolds number vs the wave number on the
distribution of the critical reflux of pressure for M = 10, L = 100000,
m = 0.1, L2 = 0.1, a1 = 0.1, e = 0.9 and σ = 0.5. b Effect of

the magnetic field number vs the wave number on the distribution of
the critical reflux of pressure for M = 10, L = 1000000, m = 0.1,
L2 = 0.1, Re = 15, a1 = 0.1, e = 0.9 and σ = 0.05
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a b c

Fig. 11 a Effect of the hall parameter number vs the wave num-
ber on the distribution of the critical reflux of pressure for M = 2,
L = 100000, L2 = 0.1, Re = 15, a1 = 0.1, a0 = 0.1, e = 0.9 and
σ = 0.5. b Effect of the electric Rayleigh number vs the wave num-
ber on the distribution of the critical reflux of pressure for M = 50,

m = 0.1, L2 = 0.1, Re = 15, a1 = 0.1, a0 = 0.1, e = 0.9 and
σ = 0.9. c Effect of the porosity parameter vs the wave number on the
distribution of the critical reflux of pressure for M = 2, L = 100000,
L2 = 0.1, Re = 15, a1 = 0.1, a0 = 0.1 and σ = 1000

the permeability parameter σ . The main outcomes of the
present study are concisely summarized as:

• AC electric field accelerates the blood flow velocity
and that leads to enhance the blood circulation, which
is useful to eliminate the metabolic waste products and
endogenous pains producing.

• The electric and magnetic fields have an opposite effect
on the mean velocity u(y), since the effect of magnetic
field is perpendicular to the influence of the electric
field.

• The parameter a1 controls in the electric Raleigh
number, in other words the effect of electric Raleigh
number exists when a1 
= 0.

• The mean time average velocity u(y) is higher in the
presence electric field, where L 
= 0, a1 
= 0

• The second order pressure gradient ∂p2
∂x

has a significant
influence on the reflux mean velocity.

• As the magnetic field increases, the flow moves as a
bulk.

• The mean average temperature T (y) is greater as the
magnetic field decreases and a reverse effect for the
Hall and permeability parameters occurs.

• The mean electric potential ϕ(y) values is greater as the
magnetic field decreases.

• The mean average temperature T (y) is greater as the
electric parameter a1 increases.

• The critical reflux pressure value is greater for a fluid
without an electric field L = 0, a1 = 0.

Appendix
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c7 = Sech(
√
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2eτ
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c8 = 1/2csch(
√

eτ)(k(−1) − k(1)),

c9 = 1

2
(n(−1) − n(1)),

c10 = 1

2
(−n(−1) − n(1)),

c11 = L2
(
a(2− 2L2(2(L2 − 2)L2 + 3))− (1− 2L2)

2(w(−1)− w(1))
)

(1 − 2L)2 log(1 − 2L2)
,

c12 = 1

2
a(L2 − 2) − w(1).
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